jueves, 27 de octubre de 2011

GASES IDEALES


La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). La energía cinética es directamente proporcional a la temperatura en un gas ideal. Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.(mentiras)
Empíricamente, se observan una serie de relaciones entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en1834.
La ley de las presiones parciales (conocida también como ley de Dalton) fue formulada en el año 1803 por el físicoquímico y matemático británico John Dalton. Establece que lapresión de una mezcla de gases, que no reaccionan químicamente, es igual a la suma de las presiones parciales que ejercería cada uno de ellos si solo uno ocupase todo el volumende la mezcla, sin cambiar la temperatura. La ley de Dalton es muy útil cuando deseamos determinar la relación que existe entre las presiones parciales y la presión total de una mezcla de gases.
La ecuación de estado
La ecuación que describe normalmente la relación entre la presión, el volumen, la temperatura y la cantidad (en moles) de un gas ideal es:

Donde:
§  P = Presión absoluta(medida en atmósferas)
§  V = Volumen (en esta ecuación el volumen se expresa en litros)
§  n = Moles de Gas
§  R = Constante universal de los gases ideales
           T = Temperatura absoluta

Se puede calcular la presión parcial de cada componente, si se conoce el número de moles de cada uno de los gases que se encuentran en la mezcla encerrada en un volumen determinado y a una temperatura dada. Debido a que las partículas de cada gas componente se conducen de una forma diferente, la presión total que ejerza la mezcla será el resultado de todas las partículas.
Se establece que la presión total de una mezcla de gases es igual a la suma de las presiones parciales de los gases individuales. Así pues:

Siendo R la constante de los gases idealesT la temperaturaV el volumen y ni el número de moles del componente i de la mezcla. El número de moles de un componente de la mezcla ni se define como el cociente entre la masa, Mi, de dicho componente y su masa molecular, mi. En general, para una mezcla, el número de moles n total se puede obtener de la siguiente ecuación:

La ley de BOYLE es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). La energía cinética es directamente proporcional a la temperatura en un gas ideal. Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.
Empíricamente, se observan una serie de relaciones entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834.



  
Diagrama presión-volumen a temperatura constante para un gas ideal.

La ecuación de estado

La ecuación que describe normalmente la relación entre la presión, el volumen, la temperatura y la cantidad (en moles) de un gas ideal es:
P \cdot V = n \cdot R \cdot T \,\!
Donde:

Teoría cinética molecular

Esta teoría fue desarrollada por Ludwig Boltzmann y Maxwell. Nos indica las propiedades de un gas ideal a nivel molecular.
  • Todo gas ideal está formado por N pequeñas partículas puntuales (átomos o moléculas).
  • Las moléculas gaseosas se mueven a altas velocidades, en forma recta y desordenada.
  • Un gas ideal ejerce una presión continua sobre las paredes del recipiente que lo contiene, debido a los choques de las partículas con las paredes de este.
  • Los choques moleculares son perfectamente elásticos. No hay pérdida de energía cinética.
  • No se tienen en cuenta las interacciones de atracción y repulsión molecular.
  • La energía cinética media de la translación de una molécula es directamente proporcional a la temperatura absoluta del gas.
En estas circunstancias, la ecuación de los gases se encuentra teóricamente:

   P V =
   N \kappa_{B} T \;
donde κB es la constante de Boltzmann, donde N es el número de partículas.

 La ecuación de estado para gases reales


Valores de R
\rm 8,314472 \quad \frac{J}{K \cdot mol}
\rm 0,08205746 \quad \frac{L \cdot atm}{K \cdot mol}
\rm 8,205746 \cdot 10^{-5} \quad \frac{m^3 \cdot atm}{K \cdot mol}
\rm 8,314472 \quad \frac{L \cdot kPa}{K \cdot mol}
\rm 62,36367 \quad \frac{L \cdot mmHg}{K \cdot mol}
\rm 62,36367 \quad \frac{L \cdot Torr}{K \cdot mol}
\rm 83,14472 \quad \frac{L \cdot mbar}{K \cdot mol}
\rm 1,98721 \quad \frac{cal}{K \cdot mol}
\rm 10,7316 \quad \frac{ft^3 \cdot psi}{^\circ R \cdot lbmol}
Haciendo una corrección a la ecuación de estado de un gas ideal, es decir, tomando en cuenta las fuerzas intermoleculares y volúmenes intermoleculares finitos, se obtiene la ecuación para gases reales, también llamada ecuación de Van der Waals:
\left ( P+\frac{a\cdot n^2} { V^2} \right ) \cdot (V-nb) = n \cdot R \cdot T \,\!
Donde:
  • P\! = Presión del gas
  • V\! = Volumen del gas
  • n\! = Número de moles de gas
  • R\! = Constante universal de los gases ideales
  • T\! = Temperatura del gas
  • a\! y b\! son constantes determinadas por la naturaleza del gas con el fin de que haya la mayor congruencia posible entre la ecuación de los gases reales y el comportamiento observado experimentalmente.

Ecuación general de los gases ideales

  
Ayuda memoria para recordar la ecuación general de los gases ideales o tambien de la forma palomas volando igual a numero de ratones trotando
Partiendo de la ecuación de estado:
P \cdot V = n \cdot R \cdot T \,\!
Tenemos que:
 \frac{P \cdot V }{n \cdot T} = R
Donde R es la constante universal de los gases ideales, luego para dos estados del mismo gas, 1 y 2:
 \frac{P_1 \cdot V_1 }{n_1 \cdot T_1} = \frac{P_2 \cdot V_2 }{n_2 \cdot T_2} = R
Para una misma masa gaseosa (por tanto, el número de moles «n» es constante), podemos afirmar que existe una constante directamente proporcional a la presión y volumen del gas, e inversamente proporcional a su temperatura.
\cfrac{P_1 \cdot V_1}{T_1 \cdot n_1}=\cfrac{P_2 \cdot V_2}{T_2 \cdot n_2}

 Formas alternativas

Como la cantidad de sustancia podría ser dada en masa en lugar de moles, a veces es útil una forma alternativa de la ley del gas ideal. El número de moles (n) es igual a la masa (m) dividido por la masa molar (M):

   n = {\frac{m}{M}}
y sustituyendo  n \, , obtenemos:

   PV = \frac{m}{M}RT
donde:

   P = \rho \frac{R}{M}T
Esta forma de la ley del gas ideal es muy útil porque se vincula la presión, la densidad ρ = m/ V, y la temperatura en una fórmula única, independiente de la cantidad del gas considerado.
En mecánica estadística las ecuaciones moleculares siguientes se derivan de los principios básicos:
\ PV = NkT.
Aquí k es el constante de Boltzmann y N es el número actual de moléculas, a diferencia de la otra fórmula, que utiliza n, el número de moles. Esta relación implica que Nk = nR, y la coherencia de este resultado con el experimento es una buena comprobación en los principios de la mecánica estadística.
Desde aquí podemos observar que para que una masa de la partícula promedio de μ veces la constante de masa atómica m U (es decir, la masa es μ U)

   N = \frac{m}{\mu m_\mathrm{u}}
y desde ρ = m/ V, nos encontramos con que la ley del gas ideal puede escribirse como:

   P =
   \frac {1}{V} \frac {m}{\mu \; m_u} k T =
   \rho\frac {k}{\mu \; m_u} T

Derivaciones

 Empíricas

La ley de gases ideales se puede derivar de la combinación de dos leyes de gases empíricas: la ley de gas y la ley de Avogadro. La combinación de estados de ley de los gases que
\frac{PV}{T}= C
donde C es una constante que es directamente proporcional a la cantidad de gas, n (ley de Avogadro). El factor de proporcionalidad es la constante universal de gases, R, i.e. C = nR.
De ahí que la ley del gas ideal
 PV = nRT \,

 Teóricas

La ley del gas ideal también se puede derivar de los primeros principios utilizando la teoría cinética de los gases, en el que se realizan varios supuestos simplificadores, entre los que las moléculas o átomos del gas son masas puntuales, poseen masa pero no volumen significativo, y se someten a colisiones elásticas sólo entre sí y con los lados del recipiente en el que se conserva tanto la cantidad de movimiento como la energía cinética.
- Se puede hacer una derivación aún más simple prescindiendo de algunos de estos supuestos, como se discutió en la derivación de la ley del gas ideal. Sólo se necesita la definición de temperatura, que el número de partículas sea fijo, que el volumen de la dependencia de las energías de su interacción sea insignificante, y que el número de estados disponibles para cada partícula a una temperatura fija sea proporcional al volumen.) Como en todas las derivaciones termodinámicas, se asume la segunda ley (maximización de la entropía dentro de las limitaciones). No hay hipótesis sobre las colisiones elásticas se requieren, lo cual es bueno ya que estos supuestos son irreales e irrelevantes para el estado de los gases ideales, como se discute: derivación de la ley del gas ideal

 Desde la mecánica estadística

Que q = (qx, qy, qz) and p = (px, py, pz) indique el vector de posición y el vector del movimiento de una partícula de un gas ideal, respectivamente. Que F indique la fuerza neta sobre la partícula. Entonces, el tiempo medio de impulso de la partícula es::

\begin{align}
\langle \mathbf{q} \cdot \mathbf{F} \rangle &= \Bigl\langle q_{x} \frac{dp_{x}}{dt} \Bigr\rangle +
\Bigl\langle q_{y} \frac{dp_{y}}{dt} \Bigr\rangle +
\Bigl\langle q_{z} \frac{dp_{z}}{dt} \Bigr\rangle\\
&=-\Bigl\langle q_{x} \frac{\partial H}{\partial q_x} \Bigr\rangle -
\Bigl\langle q_{y} \frac{\partial H}{\partial q_y} \Bigr\rangle -
\Bigl\langle q_{z} \frac{\partial H}{\partial q_z} \Bigr\rangle = -3k_{B} T,
\end{align}
donde la primera igualdad es la segunda ley de Newton, y la de segunda línea usa la ecuación de Hamilton y el teorema de equipartición. Sumando sobre un sistema de N, los rendimientos de las partículas

3Nk_{B} T = - \biggl\langle \sum_{k=1}^{N} \mathbf{q}_{k} \cdot \mathbf{F}_{k} \biggr\rangle.
Por tercera ley de Newton y la hipótesis del gas ideal, la fuerza neta sobre el sistema es la la fuerza aplicada por los muros de su contenedor y esta fuerza está dada por la presión Pdel gas. Por lo tanto:

-\biggl\langle\sum_{k=1}^{N} \mathbf{q}_{k} \cdot \mathbf{F}_{k}\biggr\rangle = P \oint_{\mathrm{surface}} \mathbf{q} \cdot d\mathbf{S},

 Procesos gaseosos particulares

Procesos realizados manteniendo constante un par de sus cuatro variables (n, P , V, T), de forma que queden dos; una libre y otra dependiente. De este modo, la fórmula arriba expuesta para los estados 1 y 2, puede ser operada simplificando 2 o más parámetros constantes. Según cada caso, reciben los nombres:

[editar] Ley de Boyle-Mariotte

Artículo principal: Ley de Boyle-Mariotte
También llamado proceso isotérmico. Afirma que, a temperatura y cantidad de gas constante, la presión de un gas es inversamente proporcional a su volumen:

   \left .
      \begin{array}{l}
         \cfrac{P_1 \cdot V_1}{T_1 \cdot n_1}=\cfrac{P_2 \cdot V_2}{T_2 \cdot n_2} \\
         \; \\
         n = \rm{Constante} \\
         T = \rm{Constante}
      \end{array}
   \right \}
   \longrightarrow
   P_1 \cdot V_1 = P_2 \cdot V_2

[editar] Leyes de Charles y Gay-Lussac

En 1802, Louis Gay Lussac publica los resultados de sus experimentos, basados en los que Jacques Charles hizo en el 1787. Se considera así al proceso isobárico para la Ley de Charles, y al isocoro (o isostérico) para la ley de Gay Lussac.

 Proceso isobaro (Charles)



   \left .
      \begin{array}{l}
         \cfrac{P_1 \cdot V_1}{T_1 \cdot n_1}=\cfrac{P_2 \cdot V_2}{T_2 \cdot n_2} \\
         \; \\
         n = \rm{Constante} \\
         P = \rm{Constante}
      \end{array}
   \right \}
   \longrightarrow
   \cfrac{V_1}{T_1}= \cfrac{V_2}{T_2}

 Proceso isocoro ( Gay Lussac)


   \left .
      \begin{array}{l}
         \cfrac{P_1 \cdot V_1}{T_1 \cdot n_1}=\cfrac{P_2 \cdot V_2}{T_2 \cdot n_2} \\
         \; \\
         n = \rm{Constante} \\
         V = \rm{Constante}
      \end{array}
   \right \}
   \longrightarrow
   \cfrac{P_1}{T_1}= \cfrac{P_2}{T_2}

 Ley de Avogadro

La Ley de Avogadro fue expuesta por Amedeo Avogadro en 1811 y complementaba a las de Boyle, Charles y Gay-Lussac. Asegura que en un proceso a presión y temperatura constante (isobaro e isotermo), el volumen de cualquier gas es proporcional al número de moles presente, de tal modo que:

   \left .
      \begin{array}{l}
         \cfrac{P_1 \cdot V_1}{T_1 \cdot n_1}=\cfrac{P_2 \cdot V_2}{T_2 \cdot n_2} \\
         \; \\
         T = \rm{Constante} \\
         P = \rm{Constante}
      \end{array}
   \right \}
   \longrightarrow
   \cfrac{V_1}{n_1}=\cfrac{V_2}{n_2}
Esta ecuación es válida incluso para gases ideales distintos

LEY DE GASES IDEALES

EJERCICIOS

Esta constante depende de las unidades usadas, la masa del gas y la temperatura.
Una forma más útil de la ley, considerando los estados inicial (V1P1) y final (P2V2) de un gas es:
P1V1 = P2V2
Ejemplo 3
Una muestra de un gas ocupa 8 litros a 25°C y 760 mm de Hg. Calcular el volumen a:
(a) 25°C y 1520 mm de Hg (b) 25°C y 380 mm de Hg
Respuesta
La temperatura del problema es constante, pudiendo aplicarse la ley de Boyle y Mariotte:
P1V1 = P2V2
a) Asignando valores P1 = 760 mm d;. Hg V1 = 8 litros: P2 = 1520 mm de Hg; V2= ?
Por lo tanto:
8 X 760 = V2 1520
despejando:
b) Asignando valores P1 = 760 mm Hg; V1 = 8 1; PZ = 380mm Hg V2 ?
Por lo tanto:
8 X 760 = V2 X 380

  • Schiavello, Mario; Vicente Ribes, Leonardo Palmisano (2003). Fundamentos de Química. Barcelona: Editorial Ariel, S.A.. 
  • Rogero, Abrahams; Antoine DuChamper, Alexander Planz (1987). Modelos de predicción molecular para ingeniero.
  • Elhassan AE, RJB Craven, KM de Reuck El método del área de fluidos puros y un análisis de la región de dos fases, equilibrio líquido de fases 130 (1997) 167-187.
  •  J.M. Smith, H.C. Van Ness, M. M. Abbott. Introducción a la Termodinámica en Ingeniería Química. 5ª Ed. McGRAW-HILL (1997). pp 726-727